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Abstract

Self-supervised learning in computer vision trains on
unlabeled data, such as images or (image, text) pairs, to
obtain an image encoder that learns high-quality embed-
dings for input data. Emerging backdoor attacks towards
encoders expose crucial vulnerabilities of self-supervised
learning, since downstream classifiers (even further trained
on clean data) may inherit backdoor behaviors from en-
coders. Existing backdoor detection methods mainly fo-
cus on supervised learning settings and cannot handle pre-
trained encoders especially when input labels are not avail-
able. In this paper, we propose DECREE, the first back-
door detection approach for pre-trained encoders, requir-
ing neither classifier headers nor input labels. We eval-
uate DECREE on over 400 encoders trojaned under 3
paradigms. We show the effectiveness of our method on im-
age encoders pre-trained on ImageNet and OpenAI’s CLIP
400 million image-text pairs. Our method consistently has
a high detection accuracy even if we have only limited or
no access to the pre-training dataset. Code is available at
https://github.com/GiantSeaweed/DECREE.

1. Introduction

Self-supervised learning (SSL), specifically contrastive
learning [5, 10, 15], is becoming increasingly popular as it
does not require labeling training data that entails substantial
manual efforts [12] and yet can provide close to the state-
of-the-art performance. It has a wide range of application
scenarios, e.g., similarity-based search [18], linear probe [1],
and zero-shot classification [4, 24, 25]. Similarity-based
search queries data based on their semantic similarity. Linear
probe utilizes an encoder trained by contrastive learning to
project inputs to an embedding space, and then trains a
linear classifier on top of the encoder to map embeddings
to downstream classification labels. Zero-shot classification
trains an image encoder and a text encoder (by contrastive
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Figure 1. Illustration of Backdoor Attack on Self-Supervised Learn-
ing (SSL). The adversary first injects backdoor into a clean encoder
and launches attack when the backdoored encoder is leveraged to
train downstream tasks. The backdoored encoder produces similar
embeddings for the attack target and any input image with trigger,
causing misbehaviors in downstream applications.

learning) that map images and texts to the same embedding
space. The similarity of the two embeddings from an image
and a piece of text is used for prediction.

The performance of SSL heavily relies on the large
amount of unlabeled data, which indicates high computa-
tional cost. Regular users hence tend to employ pre-trained
encoders published online by third parties. Such a produc-
tion chain provides opportunities for adversaries to implant
malicious behaviors. Particularly, backdoor attack or trojan
attack [8, 13, 32] injects backdoors in machine learning
models, which can only be activated (causing targeted
misclassification) by stamping a specific pattern, called
trigger, to an input sample. It is highly stealthy as the back-
doored/trojaned model functions normally on clean inputs.

While existing backdoor attacks mostly focus on classi-
fiers in the supervised learning setting, where the attacker in-
duces the model to predict the target label for inputs stamped
with the trigger, recent studies demonstrate the feasibility
of conducting backdoor attacks in SSL scenarios [3, 20, 46].

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16352



Figure 1 illustrates a typical backdoor attack on image en-
coders in SSL. The adversary chooses an attack target so
that the backdoored encoder produces similar embeddings
for any input image with trigger and the attack target. The
attack target can be an image (chosen from some dataset
or downloaded from the Internet), or text captions. Text
captions are compositions of a label text and prompts, where
the label text usually denotes “{class name}”, like “truck”,
“ship”, “bird”, etc. For example, in Figure 1, the adversary
could choose a “truck” image or a text caption “a photo
of truck” as the attack target. After encoder poisoning and
downstream classifier training, the classifier tends to predict
the label of the attack target when the trigger is present. As
shown in Figure 1, when the attack target is a truck image
and the encoder is used for linear probe, the classifier inher-
its the backdoor behavior from the encoder. As a result, a
clean ship image can be correctly predicted by the classifier
whereas a ship image stamped with the trigger is classified
as “truck”. If the attack target is “a photo of truck” and the
encoder is used in zero-shot prediction, a clean ship image
shares a similar embedding with the text caption “a photo of
ship”, causing correct prediction. In contrast, the embedding
of a ship image stamped with the trigger is more similar to
the embedding of “a photo of truck”, causing misprediction.

These vulnerabilities hinder the real world applications of
pre-trained encoders. Existing backdoor detection methods
are insufficient to defend such attacks. A possible defense
method is to leverage existing backdoor detection methods
focusing on supervised learning to scan downstream classi-
fiers. Apart from its limited detection performance (as we
will discuss later in Section 3), it cannot work properly under
the setting of zero-shot classification, where there exists no
concrete classifier. This calls for new defense techniques that
directly detect backdoored encoders without downstream
classifiers. More details regarding the limitations of existing
methods can be found in Section 3.

In this paper, we propose DECREE, the first backdoor de-
tection approach for pre-trained encoders in SSL. To address
the insufficiency of existing detection methods, DECREE
directly scans encoders. Specifically, for a subject encoder,
DECREE first searches for a minimal trigger pattern such
that any inputs stamped with the trigger share similar em-
beddings. The identified trigger is then utilized to decide
whether the given encoder is benign or trojaned. We evaluate
DECREE on 444 encoders and it significantly outperforms
existing backdoor detection techniques. We also show the
effectiveness of DECREE on large size image encoders pre-
trained on ImageNet [12] and OpenAI’s CLIP [40] image
encoders pre-trained on 400 million uncurated (image, text)
pairs. DECREE consistently achieves high detection accu-
racy even when it only has limited access or no access to the
pre-training dataset.

Threat Model. Our threat model is consistent with the

literature [3, 20]. We only consider backdoor attacks on
vision encoders. We assume the attacker has the capabilities
of injecting a small portion of samples into the training set of
encoders. Once the encoder is trojaned, the attacker has no
control over downstream applications. Given an encoder, the
defender has limited or no access to the pre-training dataset
and needs to determine whether the encoder is trojaned or
not. She does not have any knowledge about the attack target
either. We consider injected backdoors that are static (e.g.
patch backdoors) and universal (i.e. all the classes except for
the target class are the victim).

2. Background and Related Work
2.1. Backdoor Attack and Defense

Backdoor attack poses severe security threats to ma-
chine learning models. It aims to induce target misbe-
haviors, e.g., misclassification in an image classifier, via
specialized perturbations on the input. These perturba-
tions (i.e., triggers) generally fall into two categories, patch-
like triggers [13, 32, 37, 42, 44, 55] and pervasive trig-
gers [8, 9, 28, 29, 33, 38]. Existing defensive efforts mainly
focus on detecting backdoored models or eliminating in-
jected backdoors in trojaned models. To distinguish back-
doored models from benign ones, existing techniques in-
vert trigger patterns for a given model and make decisions
based on the characteristic of inverted triggers (e.g., trig-
ger size) [14, 31, 34, 45, 49–51]. Another line of work
leverages a meta-classifier to determine whether a model
is backdoored based on feature representations extracted
from the model [21, 54]. Unfortunately, existing solutions
can hardly detect backdoors in pre-trained encoders as they
were designed for supervised learning that require clas-
sification labels (discussed in Section 3). Backdoor re-
moval techniques harden models through adversarial train-
ing [52, 59], knowledge distillation [27], and class-distance
enlargement [48]. They usually require a set of labeled train-
ing data. Backdoor defense techniques also include backdoor
mitigation [2, 27, 30, 56, 58] and certified robustness against
backdoors [19, 35, 53].

2.2. Self-supervised Learning

SSL aims to train an image encoder from a large number
of uncurated data. Different from supervised learning
that requires manually labeled data, SSL extracts useful
information from the data itself.

Among many approaches to training image encoders from
unlabeled data, contrastive learning achieves the state-of-
the-art performance, e.g., MoCo [15], SimCLR [5], Sim-
CLRv2 [6] and CLIP [40]. It constructs a function f : X →
E, that maps an input sample (i.e., an image or a text caption)
to an embedding space where semantically “similar” samples
have close embeddings and “dissmilar” samples have embed-
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dings far away from each other under certain metrics. Con-
trastive learning is commonly used in two settings: single-
modal [7, 47] that trains an encoder in a single domain like
image; and multi-modal [18,40] that trains multiple encoders
in different domains simultaneously like image and text.

2.3. Backdoor Attack on Self-supervised Learning

Existing backdoor attacks on SSL mainly fall into four
categories. In this paper, we focus on the first three.
1) Image-on-Image: These attacks [20, 43] are conducted on
single-modal image encoders and the attack target is image.
2) Image-on-Pair: This attack [20] also targets on multi-
modal contrastive learning encoders, i.e., trained on (image,
text) pairs, and the attack target is image.
3) Text-on-Pair: This type of attack [3] is conducted on
multi-modal contrastive learning encoders, i.e., trained on
(image, text) pairs, and the attack target is text.
4) Text-on-Text: These attacks [23, 46] are conducted on
single-modal text encoders and the attack target is text.

3. Limitations of Existing Backdoor Scanners
To identify whether an encoder is trojaned or not, the de-

fender can leverage existing backdoor scanners (e.g., Neural
Cleanse (NC) [50] and ABS [31]) to check downstream clas-
sifiers that utilize the encoder, without the need to directly
scan the encoder. However, this strategy has its limitations
as later shown in the section. Another type of backdoor
scanners such as MNTD [54] leverage a meta-classifier to
distinguish benign and backdoored models. They first train
thousands of benign and backdoored models and then train a
meta-classifier on the extracted signatures of these models.
Such a design in SSL setting may not be that practical due
to its high cost. For example, creating a backdoored encoder
by contrastive learning takes 48 hours [3]. MNTD requires
constructing 2048 benign and 2048 trojaned encoders.

To explain the limitations of scanning downstream clas-
sifiers, we consider two application scenarios: linear probe
and zero-shot prediction.
Scenario I: Linear Probe. We construct a backdoored en-
coder pre-trained on CIFAR10 [22] and take an image of
label one in dataset SVHN [36] as the attack target. The
encoder is also used to train another two downstream clas-
sifiers on STL-10 [11] and GTSRB [17], respectively. We
apply NC and ABS on the three downstream classifiers and
the results are shown in Table 1. Since the attack target is in
SVHN chosen by the attacker (when trojaning the encoder),
the ASR is 100% on SVHN.

In this case, existing backdoor scanners can successfully
detect the trojaned classifier and hence the backdoored en-
coder, with the Anomaly Index 2.18 > 2 in NC and the
REASR 1.00 > 0.88 in ABS. However, when the down-
stream classifiers’ training datasets (STL-10 and GTSRB)
do not contain the attack target, both NC and ABS fail to

detect the backdoor in the encoder as shown in the last two
rows. This has two implications for existing backdoor scan-
ners: (1) they have to possess the knowledge of the attack
target and the corresponding downstream task, which is not
easy to acquire as there exist a large number of different
downstream tasks (for an encoder). (2) They have to ob-
tain the original training dataset of the downstream task to
construct the classifier for detection, which may be private.

Scenario II: Zero-shot prediction. To predict the caption for
an input image, zero-shot classifier directly computes simi-
larities between the image’s embedding and every text em-
bedding of candidate captions, and selects the caption that
shares the most similar embedding with the input image. In
this scenario, it is evident that existing backdoor scanners
are not applicable as there is no classifier to scan, as shown
in Figure. 1. This calls for a backdoor detection method that
can handle attacks in the embedding space.

4. Design of DECREE

As discussed in Section 3, existing backdoor scanners
either require the knowledge of the attack target or are not
applicable to directly scanning encoders. A backdoor de-
tection method for pre-trained encoders ought to meet the
following design goals: (1) no knowledge of downstream
tasks (including data samples or labels); (2) no knowledge of
the attack target; and (3) directly scanning encoders without
training a downstream application classifier.

In this section, we first make a few observations on back-
door attacks in SSL (Section 4.1) and explain the intuitions
of our design. We then present the technical details for self-
supervised trigger inversion (Section 4.2.1) and backdoor
identification (Section 4.2.2).

4.1. Observations and Intuitions

Observation I: Although SSL does not require labels during
pre-training, the embeddings of samples with the same label
(by the trained encoder) tend to cluster together whereas
those of different labels tend to scatter, as visualized in
Figure. 2a. As shown in Table 2, clean samples (of various
classes) have an average cosine similarity of only 0.2193 on
a clean encoder.
Observation II: A trojaned encoder produces highly similar
embeddings for samples with trigger while a clean encoder
does not. Table 2 shows that, in a clean encoder, the trigger
can increase the cosine similarity of samples from 0.2193
to 0.2922 (in the first row). The increase is limited and
insignificant. As shown in Figure. 2b, the clean encoder can
still correctly separate inputs with the trigger. In contrast,
as the backdoor attack forces the samples with trigger to
be close to the attack target, it creates a dense area (shown
in Figure. 2d) in a backdoored encoder where embeddings
share a high similarity (0.9904).
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4.2.2 Backdoor Identification

Recall that a challenge of detecting backdoors in SSL is that
there are no labels. Therefore existing backdoor scanners
cannot identify the potential target label, which is the key to
determining whether a model is backdoored in supervised
learning. To overcome this challenge, DECREE introduces
a new metric PLn:

PLn(E) =
∥m̃∥n
∥x̂∥n

. (6)

∥ · ∥n denotes the Ln norm of a vector; m̃ denotes the
trigger inverted from a given encoder E; and x̂ denotes the
input sample that has the maximum Ln norm in the input
space of that encoder. PLn(E), denoting the Proportionate-
Ln Norm of an encoder E, is thus defined as the ratio of the
inverted trigger’s Ln norm to the maximum Ln norm of the
encoder’s input space. Note that PLn is an encoder-level
metric, approximating the distance from clean samples to the
dense area. In this way, DECREE does not need to identify
the target label.

As discussed in Section 4.1, triggers inverted from back-
doored encoders shall be smaller than those from clean en-
coders. Thus for a backdoored encoder, DECREE has a
better chance to invert a small trigger that can induce the
encoder to output two similar embeddings for two dissimilar
inputs. Based on the proposed PLn and the above intuition,
DECREE uses the following formula to identify backdoors
in encoders.

P̃ (E) = B
(
PL1(E), τ

)
. (7)

P̃ (E) is the estimated probability that a given encoder E
contains a backdoor. B is a binary step function that returns
1 if its first parameter is less than a given threshold τ and
0 otherwise. Essentially, if the inverted trigger of a given
encoder only occupies a small part of the input data sample,
we consider the encoder is very likely a trojaned encoder.

5. Evaluation
We use the following research questions (RQs) to evaluate

DECREE:
RQ1: How effective is our method?
RQ2: How efficient is our method?
RQ3: How robust is our method against adaptive attack?
RQ4: How effective is our method if the defender has no

access to the pre-training dataset?

5.1. Experiment Setup

We employ five commonly used datasets, CIFAR10 [22],
GTSRB [17], SVHN [36], STL-10 [11], and ImageNet [41],
for pre-training encoders and training downstream classifiers.
We use three well-known model architectures, ResNet18,
ResNet34, and ResNet50 [16]. As the CLIP dataset [40]

is not publicly available, we downloaded a pre-trained en-
coder from [39] and use ImageNet to finetune the encoder
by applying SimCLR [5] algorithm.

For backdoor attacks, we consider three categories in the
SSL setting, namely Image-on-Image, Image-on-Pair, and
Text-on-Pair, as discussed in Section 2.3. Note that there are
only a limited number of public backdoored encoders, we
hence use the official implementation [20] or implement the
attacks strictly following the original paper [3] to construct
backdoored encoders. For Image-on-Image and Image-on-
Pair attacks, we choose a “priority” image from GTSRB, a
“one” image from SVHN, and a “truck” image from STL-10
as attack targets. We only consider backdoored encoders
that achieve at least 99% attack success rate in the targeted
downstream classifiers. For Text-on-Pair attack, we choose
the label text “priority” for GTSRB, “one” for SVHN, and
“truck” for STL-10 to fill in a prompt list (shown in Table 6
in Appendix B) and use these text captions as attack targets.
The z-score introduced in [3] quantifies to what extent the
subject encoder is trojaned. We only consider backdoored
encoders with a z-score greater than 2.5 for evaluation. We
set β = −0.99 and τ = 0.1 during the detection. We use
444 encoders (111 benign and 333 backdoored) to evaluate
DECREE. Details are shown in Appendix A.

5.2. RQ1: Effectiveness of Our Method

We evaluate the performance of DECREE by using
common metrics (e.g., detection accuracy, ROC-AUC). We
also show the distributions of inverted triggers for clean
and backdoored encoders and study how the two sets are
separated by DECREE.

The detection results of DECREE are shown in Table 3.
We evaluate on three attack categories, namely Image-on-
Image, Image-on-Pair, and Text-on-Pair. For each attack cat-
egory, we choose three attack targets, from GTSRB, SVHN
and STL-10 respectively.

Observe that DECREE can effectively detect almost all
the backdoored encoders with more than 95% accuracy in
most cases. Particularly, for 14 out of 18 scenarios, DE-
CREE has 100% detection accuracy. For Text-on-Pair on
SVHN, the detection accuracy is slightly lower (87.5%).
This is because the attack targets for this case are natural
language sentences, and they usually have multiple target
instances. For example, a trigger with the label text “truck”
can use both “a picture of truck” and “a nice photo of truck”
as attack targets, making the triggers less centralized than
those attacks on images. Note that we use the same thresh-
old for all the application/attack settings. That said, with
the knowledge of the particular application scenario (Text-
on-Pair), DECREE can still effectively distinguish back-
doored encoders from clean encoders by slightly increasing
the threshold, as depicted in Figure 4f. The last row in Ta-
ble 3 show the summarized performance. We can see that
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Table 3. Detection Performance. The first three columns list the attack category, the dataset used for pre-training encoders, and the model
architecture. RN18, RN34, and RN50 denote model architecture ResNet18, ResNet34, and ResNet50, respectively. The following three
column blocks present the results for which dataset the attack target comes from, i.e., GTSRB, SVHN, and STL-10. Columns in each block
show the number of true positives (TP), false positives (FP), false negatives (FN), true negatives (TN) when we use DECREE to detect
backdoored encoders. Acc denotes the overall detection accuracy.

Attack
Category

Pre-training
Dataset

Model
Arch

GTSRB atk SVHN atk STL-10 atk

TP FP FN TN Acc TP FP FN TN Acc TP FP FN TN Acc

Img-on-Img
CIFAR10

RN18 30 2 0 28 96.7 30 2 0 28 96.7 30 2 0 28 96.7
RN34 30 0 0 30 100 30 0 0 30 100 30 0 0 30 100
RN50 15 0 0 15 100 15 0 0 15 100 15 0 0 15 100

ImageNet RN50 12 0 0 12 100 12 0 0 12 100 12 0 0 12 100

Img-on-Pair CLIP RN50 12 0 0 12 100 12 0 0 12 100 12 0 0 12 100

Text-on-Pair CLIP RN50 12 0 0 12 100 9 0 3 12 87.5 12 0 0 12 100

Summary - - 111 2 0 109 99.1 108 2 3 109 97.7 111 2 0 109 99.1
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Figure 4. Distribution of Inverted Triggers. Each sub-figure
corresponds to one setting (one line in Table 3) and depicts the
results for that setting. The x-axis denotes different models and the
y-axis denotes the PL1-Norm value. The green markers denote
inverted triggers for clean encoders while other color markers
(i.e., brown, orange, and red markers) denote inverted triggers for
backdoored encoders with attack targets coming from GTSRB,
STL-10 and SVHN, respectively.

DECREE achieves a detection accuracy of near 100% in all
cases on average, delineating its effectiveness. We also use
the ROC (Receiver Operating Characteristic) curve to study
the relation between true positive rate and false positive rate
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Figure 6. Performance without
Access to Pre-training Dataset

as shown in Figure 8 in Appendix D.
We study the distributions of inverted triggers for clean

and backdoored encoders, which are shown in Figure 4.
Each sub-figure corresponds to one setting (one line in Ta-
ble 3) and depicts the results for that setting. Observe that
in all scenarios, inverted triggers for backdoored encoders
have smaller PL1-Norm than those for clean encoders. The
triggers for backdoored encoders tend to cluster in small
PL1-Norm values (< 0.1). This demonstrates the reason
why DECREE is able to effectively detect backdoored en-
coders with a same threshold. We also visually show that
the inverted triggers for backdoored encoders have much
fewer perturbed pixels compared to those for clean encoders.
Please see detailed results and discussion in Appendix C.

5.3. RQ2: Efficiency of Our Method

In this section, we evaluate the efficiency of DECREE in
comparison with two SOTA backdoor scanning techniques,
i.e., Neural Cleanse (NC) [50] and ABS [31]. Recall in
Section 3, we observe that existing detection methods need
the knowledge of downstream tasks. In addition, they also
require samples from the downstream dataset for detection.
For a fair comparison, we assume existing detectors have full
access to the downstream dataset, with which they can train
a corresponding downstream classifier and perform the de-
tection based on the classifier and downstream task samples.
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