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Abstract—Deep Learning backdoor attacks have a threat
model similar to traditional cyber attacks. Attack forensics, a
critical counter-measure for traditional cyber attacks, is hence
of importance for defending model backdoor attacks. In this
paper, we propose a novel model backdoor forensics technique.
Given a few attack samples such as inputs with backdoor
triggers, which may represent different types of backdoors, our
technique automatically decomposes them to clean inputs and
the corresponding triggers. It then clusters the triggers based
on their properties to allow automatic attack categorization and
summarization. Backdoor scanners can then be automatically
synthesized to find other instances of the same type of backdoor
in other models. Our evaluation on 2,532 pre-trained models,
10 popular attacks, and comparison with 9 baselines show that
our technique is highly effective. The decomposed clean inputs
and triggers closely resemble the ground truth. The synthesized
scanners substantially outperform the vanilla versions of existing
scanners that can hardly generalize to different kinds of attacks.

I. INTRODUCTION

Deep Learning (DL) backdoor attacks [24], [54] leverage
vulnerabilities in pre-trained models such that inputs stamped
with a specific (small) input pattern (e.g., a polygon patch)
or undergone some fixed transformation (e.g., applying a
filter) induce intended model misbehaviors, such as mis-
classification to a target label. The misbehavior-inducing
input patterns/transformations are called backdoor triggers.
The vulnerabilities are usually injected through various data
poisoning methods [10], [46], [50], [67], [68], [75], [76]. Some
even naturally exist in normally trained models [87], [88].

The attack model of DL backdoors becomes increasingly
similar to that of traditional cyber attacks (on software), and
in the meantime DL models have more and more applications
in critical tasks such as autonomous driving and ID recogni-
tion (for access control). Defending model backdoors hence
becomes a pressing need. Figure 1 shows the traditional cyber
attack model. Vulnerabilities exist in applications (e.g., due to
implementation bugs). The adversary exploits a vulnerability
by crafting a special input, e.g., an extremely long input to
exploit a buffer overflow vulnerability. The exploit could lead
to a wide range of damage (e.g., hijacking a system, leaking
information, and corrupting services). The adversary has no
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Fig. 1: Cyber attack
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Fig. 2: Forensics

control of the execution environment of application on the user
side (the dotted box in Figure 1). He can only manipulate the
input to achieve his goal. Many inputs can be easily crafted
to exploit the same vulnerability. And vulnerabilities can be
patched by fixing bugs.

Analogously in DL backdoor attacks, vulnerabilities are
model properties such that (any) inputs can be transformed
in a specific way to exploit them. The process of crafting
inputs does not require access to model execution (on the
user side). The input crafting efforts are minimal as triggers
are known by the adversary beforehand (because he injected
them). In contrast, traditional adversarial attack [5], [7], [63]
usually requires much more computing efforts to generate
exploit perturbations. Some even do that on-the-fly. Moreover,
backdoors can be effectively removed by model hardening with
negligible model accuracy degradation [48], [51], [97], [106].
Model misbehaviors can have a lot of downstream ramifications.
For example, misclassifying a stop sign to something else could
have catastrophic consequences in an auto-driving system.

Forensics [11], [27], [28], [62], [101] is an important
countermeasure for traditional cyber attacks. As shown in
Figure 2, given attack instances (including the application and a
small set of exploit inputs), forensics techniques aim to identify
their root causes (e.g., the bug), assess damage, and provide
critical information to build vulnerability/malware scanners to
identify similar attack instances and similar bugs. They also
greatly facilitate attack prevention and program repair [44], [52],
[66], [96]. Due to the similarity of DL backdoor attacks and
traditional cyber attacks, we argue that forensics is an important
step in fighting against DL backdoor attacks as well. There
are existing efforts in detecting inputs that contain backdoor
triggers [15], [33] and recognizing, cleansing poisonous inputs
from training data using evidence collected from a few attack
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instances [9], [21]. The former aims to decide if a given input
contains any backdoor trigger. Existing techniques usually
leverage the observation that such inputs manifest themselves
by having out-of-distribution values in the input or feature
space [15], [92]. The latter searches for a subset of training
samples such that training on the subset reduces the attack
success rate (ASR) to almost 0 without causing model accuracy
degradation. Februus [15] aims to cleanse individual trojaned
inputs by removing stamped triggers. It first identifies the trigger
in a given input using GradCAM [78] based on the assumption
that the classification output is dominated by the trigger area. It
then removes the entire trigger area and uses GAN to fill in the
space. These existing works focus on specific sub-problems in
forensics, inspiring a more comprehensive forensics workflow.
For example, backdoor input detection techniques can be used
to capture attack instances for downstream forensics analysis.

In this work, we propose a novel DL backdoor forensics
method BEAGLE (Forensics of Backdoor attack on deep
lEArninG modeLs for better defensE). Given a few attack
instances, each including the model and a few inputs likely
containing backdoor triggers, BEAGLE automatically decom-
poses each trojaned input to a clean input and a trigger.
The trigger could be a patch-like input pattern or an input
space transformation function. The decomposed clean input
should closely resemble the original clean input (which is
unknown to BEAGLE), and the decomposed trigger should be
very similar to the injected trigger (which is also unknown to
BEAGLE). The decomposed trigger will be able to flip a large
set of clean inputs to the same target label, if applied. This is
analogous to the root cause analysis stage in traditional cyber
attack fornensics. More importantly, BEAGLE will automatically
cluster these attack instances leveraging the decomposition
results such that each cluster denotes a specific type of backdoor.
It further summarizes each cluster to a set of distributions,
and automatically synthesizes a corresponding scanner to find
the same type of backdoor in other models. Note that the
instantiations of a type of backdoor on different models are
largely different. For example, different patch attack instances
(on different models) may have different patch shapes, sizes,
pixel patterns, and different positions to stamp the patches. It
is unlikely that we can detect other instances of the same
type of attack by simply stamping the raw decomposed
triggers produced by the forensics analysis. Instead, BEAGLE
abstracts the given instances such that other instantiations can
be detected. This is analogous to building vulnerability and
malware detection tools based on forensics results in traditional
cyber security.

Our method formulates the attack decomposition step as a
cyclic optimization problem. At the beginning, the decomposed
clean input and the decomposed trigger are of very low quality,
for instance, some random disintegration of the trojaned input.
The cyclic optimization ensures that any improvement on
the decomposed clean input leads to improvement of the
decomposed trigger, and vice versa. High quality decomposition
can be achieved when the process converges. We formulate
backdoor attacks in two mathematical forms: patching attacks
that induce localized input perturbations and transforming
attacks that induce pervasive perturbations. As such, the existing
wide range of different attacks can be modeled by different
coefficient distributions for the mathematical forms, allowing
us to achieve automatic categorization. The formulas and

their coefficient distributions are then used to synthesize loss
functions for scanners. A scanner determines if a model contains
any backdoor, without requiring any trojaned inputs, analogous
to a traditional malware/vulnerability scanner, which scans
without (exploit) inputs. Given a model to scan, the synthesized
loss functions are used to invert a backdoor trigger for the
model. If such inversion succeeds, the model is considered
trojaned. The inversion process essentially generates small input
perturbation patterns or transformation functions by gradient
descent based on the synthesized loss functions such that the
generated perturbation/transformation (i.e., trigger) can induce
model misclassification. Our contributions are summarized in
the following.


 We propose a novel model backdoor attack forensics
technique that contains automatic attack root cause
analysis, attack summarization, and scanner synthesis.


 Our root cause analysis features a new cyclic optimiza-
tion pipeline that can decompose a trojaned input to
its clean version and the trigger.


 We propose to formulate existing attacks using two
mathematical forms such that different attacks become
different distributions of coefficients of the two forms,
enabling automatic attack categorization, and scanner
synthesis.


 We evaluate our prototype BEAGLE on 10 popular
backdoor attacks, including BadNets [24], TrojNN [54],
Dynamic [76], Reflection [56], SIG [3], Blend [10],
Invisible [46], WaNet [68], Instagram filter [53],
DFST [12], and on 2,532 pre-trained models. We
demonstrate the benefits of forensics analysis by en-
hancing five existing backdoor scanning techniques and
comparing with an existing trojaned input decomposi-
tion method. Our results show that existing scanners
have substantial performance degradation when they
are used to scan attacks that they are not designed
for (e.g., from over 0.9 scanning accuracy down to
lower than 0.55), whereas the scanners synthesized by
BEAGLE can achieve 0.9 detection accuracy for all
these attacks, when only 10 trojaned input instances
are assumed for each attack during forensics and the
models under scanning are completely different from
the ones used in forensics. We also show that BEAGLE
can even improve existing scanners’ performance on
their targeted attacks by 9%-27% because although
they are fined-tuned for the targeted attacks, the
fine-tunings were done manually by their original
developers, whereas BEAGLE automatically synthesizes
scanners. Our experiments also show that the trojaned
input decomposition produces high-quality results. The
decomposed clean images are 22% more similar to the
ground truth than a baseline method Februus [15]. And
100% of them are correctly classified by the models,
compared to 38% by the baseline. Our decomposed trig-
gers achieve 96% ASR whereas those by the baseline
can only achieve 45%. Our ablation study, sensitivity
study, and adaptive attack show that BEAGLE has a
robust design.

Threat Model. Our threat model is similar to that in data
poisoning [10], [24], [54], [56], [68], in which the adversary
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