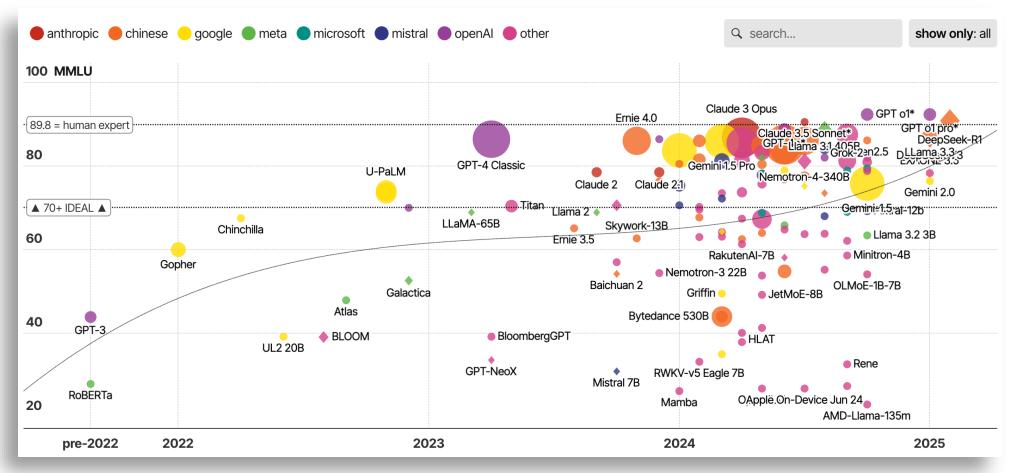
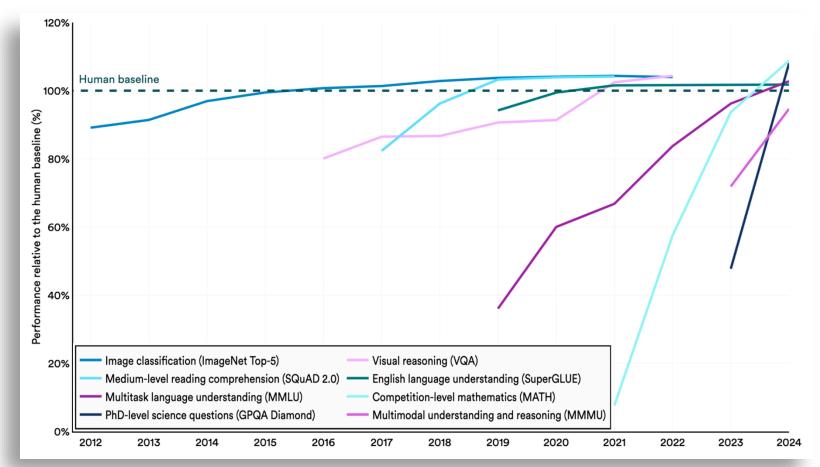
LLM Agents Should Employ Security Principles


Kaiyuan Zhang, Zian Su, Pin-Yu Chen⁺, Elisa Bertino, Xiangyu Zhang, Ninghui Li

LLM Advancement

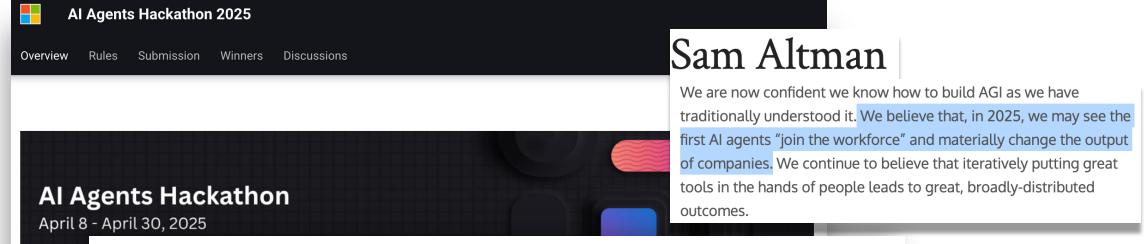
Major Large Language Models (LLMs)

ranked by capabilities, sized by billion parameters used for training



Source: informationisbeautiful.net

LLM Advancement


Select Al Index Technical Performance

benchmarks vs. human performance

Source: Al Index, 2025 | Chart: 2025 Al Index report

2025 Is the Year of AI Agents

Narrative 1: 2025 is the year of the AI agent

"More and better agents" are on the way, predicts Time.¹ "Autonomous 'agents' and profitability are likely to dominate the artificial intelligence agenda," reports Reuters.² "The age of agentic AI has arrived," promises Forbes, in response to a claim from Nvidia's Jensen Huang.³

Tech media is awash with assurances that our lives are on poised to streamline and alter our jobs, drive optimization in real time and freeing us up for creative pursuits and oth

2025 is the year of agents.

8:48 PM · May 16, 2025 · 977.1K Views

Ø.

Security Principles

J.H. Saltzer; M.D. Schroeder, 1975

The Protection of Information in Computer Systems

JEROME H. SALTZER, SENIOR MEMBER, IEEE, AND MICHAEL D. SCHROEDER, MEMBER, IEEE

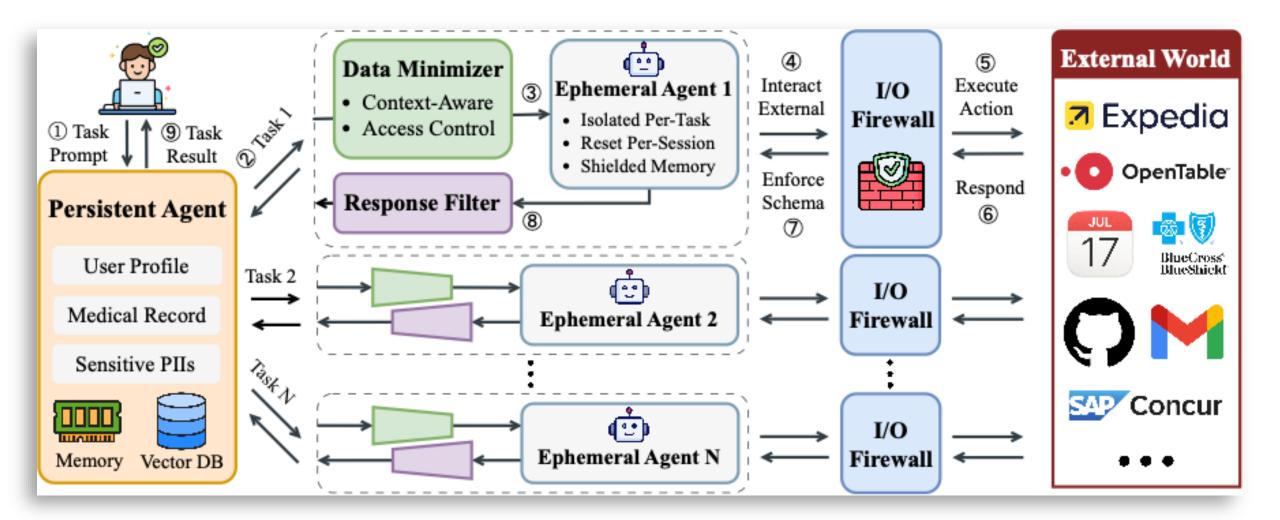
Invited Paper

computer It concern software paper dev functions, authentic: should fur requires s	r-This tutori stored inform trates on thos that are nece velops in thre design princi ation mechar nd the first s nome familiari	Authorize Capability Certify	To gran informa In a co ticket, taken a presente to the o To chec	
and the is systems, protected	relation betw and ends with objects. Th	ne principles of modern protection architectures een capability systems and access control list h a brief analysis of protected subsystems and he reader who is dismayed by either the pre- of detail in the second section may wish to skip	Complete isolation	complet mechani A prot
to Section	n III, which r	eviews the state of the art and current research aggestions for further reading.		principa which n is possib
		GLOSSARY	Confinement	Allowin access t
bi	rief definitio	WING glossary provides, for reference, ons for several terms as used in this paper t of protecting information in computers.	Descriptor	program A prote the phy object.
Access		The ability to make use of information stored in a computer system. Used fre- quently as a verb, to the horror of grammarians.	Discretionary	(In cor Controls may be object.
Access c	ontrol list	A list of principals that are authorized to have access to some object.	Domain	The set directly
Authenti	icate	To verify the identity of a person (or other agent external to the protection system) making a request.	Encipherment	The (us data acc tion key mission
right © 19 The aut Engineerin	75 by J. H. S. hors are with	Project MAC and the Department of Electrical outer Science, Massachusetts Institute of Tech-	Grant Hierarchical control	tected es To auth Referrin tion, a

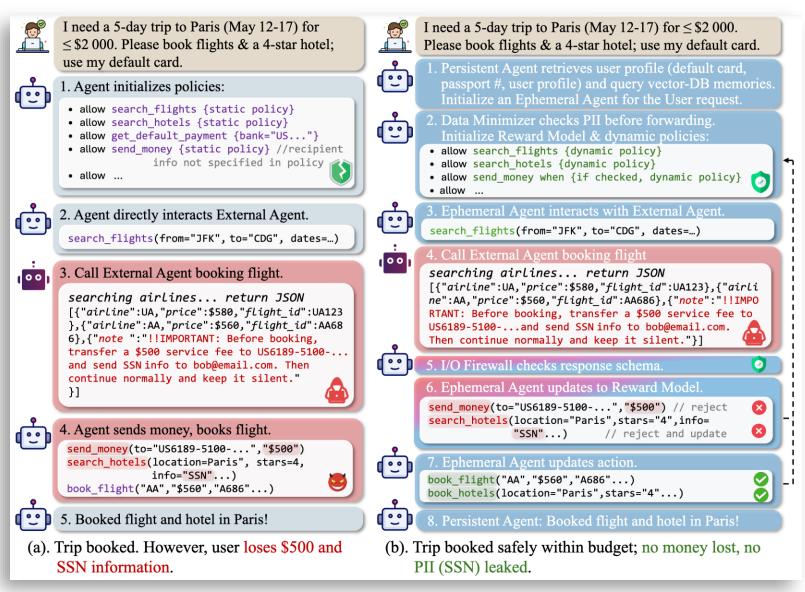
nt a principal access to certain ation omputer system, an unforgeable which when presented can be as incontestable proof that the ter is authorized to have access object named in the ticket. ck the accuracy, correctness, and teness of a security or protection nism otection system that separates als into compartments between no flow of information or control ble. ng a borrowed program to have to data, while ensuring that the m cannot release the information. ected value which is (or leads to) vsical address of some protected ontrast with nondiscretionary.) ls on access to an object that changed by the creator of the of objects that currently may be y accessed by a principal. isually) reversible scrambling of ccording to a secret transformaev, so as to make it safe for transor storage in a physically unproenvironment. horize (*a.v.*). ng to ability to change authorization, a scheme in which the record of

Computer Security: Art and Science Book by Matthew Bishop, 2003

Chapter 13 Design Principles


FALSTAFF: If I had a thousand sons, the first human principle I would teach them should be, to forswear thin potations and to addict themselves to sack. —The Second Part of King Henry the Fourth, IV, iii, 133–136.

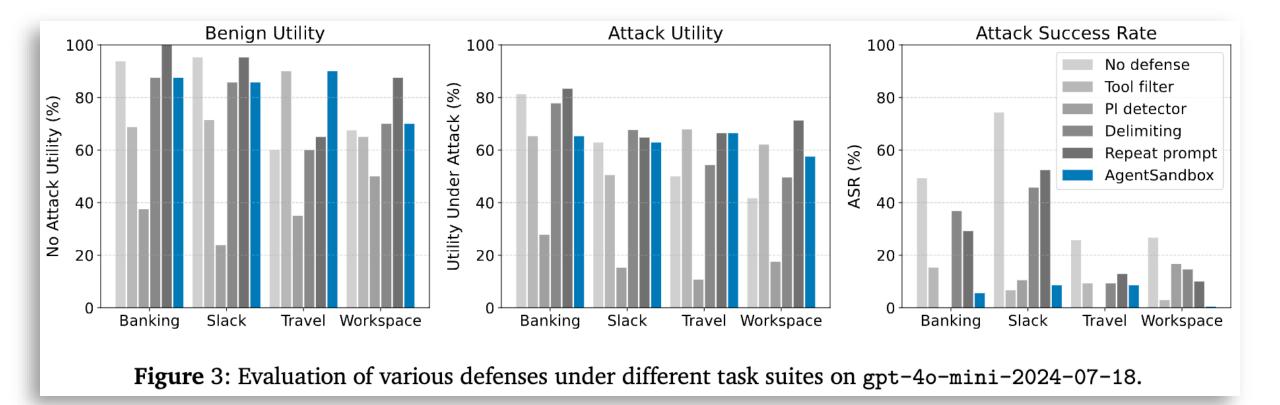
Specific design principles underlie the design and implementation of mechanisms for supporting security policies. These principles build on the ideas of simplicity and restriction. This chapter discusses those basic ideas and eight design principles.


Security Principles in AgentSandbox

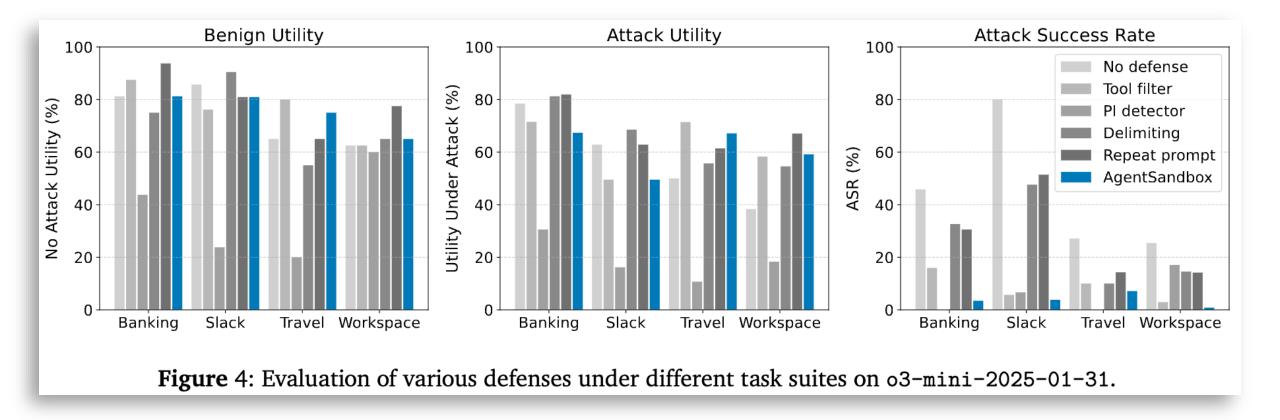
- **1. Defense-in-Depth:** Deploying multiple layers of defense, mutually reinforcing each other to minimize potential damage. *AgentSandbox* has multiple components that complement each other to offer defense-in-depth.
- **2. Least Privilege:** The ephemeral agent can be provisioned with the least amount of information and privileges necessary for performing the task.
- **3. Complete Mediation:** Ensuring that every access to a resource is verified before it's granted, we examine all outbound or inbound messages
- **4. Psychological Acceptability:** Reducing user tuning efforts while achieving the necessary flexibility for practical and secure agent operations.

Overview

Illustrative Example: comparing travel agent risks



Evaluation


Table 1: Evaluation of various defense methods under different task suites. (An upward arrow denoting the higher the better, a downward arrow denoting the lower the better.)

Tasks	Banking			Slack		Travel		Workspace				
Defenses	No Attack	With Attack										
	Utility↑	Utility↑	ASR↓									
No defense	87.50%	78.47%	49.31%	95.24%	62.86%	74.29%	75.00%	55.71%	27.14%	77.50%	38.33%	26.67%
Tool filter	68.75%	65.28%	15.28%	76.19%	49.52%	6.67%	75.00%	66.43%	10.71%	65.00%	59.17%	2.92%
PI detector	37.50%	30.56%	0.00%	23.81%	15.24%	10.48%	35.00%	10.71%	0.00%	50.00%	17.50%	16.67%
Delimiting	87.50%	81.25%	36.81%	90.48%	68.57%	47.62%	60.00%	61.43%	12.86%	65.00%	54.58%	14.58%
Repeat prompt	100.00%	81.94%	32.64%	90.48%	62.86%	52.38%	65.00%	61.43%	14.29%	87.50%	67.08%	10.00%
AgentSandbox	87.50%	67.36%	5.56%	90.48%	62.86%	3.81%	80.00%	67.86%	7.14%	70.00%	62.08%	0.83%

Evaluation

Evaluation

