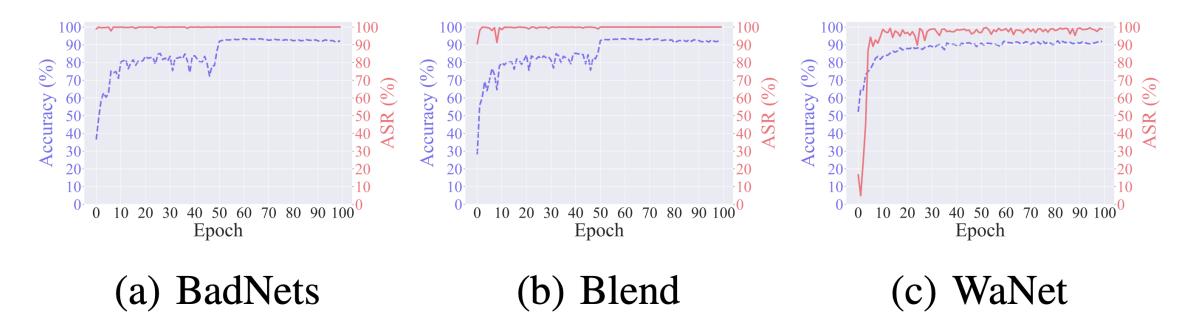
Exploring the Orthogonality and Linearity of Backdoor Attacks

Kaiyuan Zhang^{1*}, Siyuan Cheng^{1*}, Guangyu Shen¹, Guanhong Tao¹, Shengwei An¹, Anuran Makur¹, Shiqing Ma², Xiangyu Zhang¹ ¹Purdue University, ²University of Massachusetts Amherst, *Equal contribution

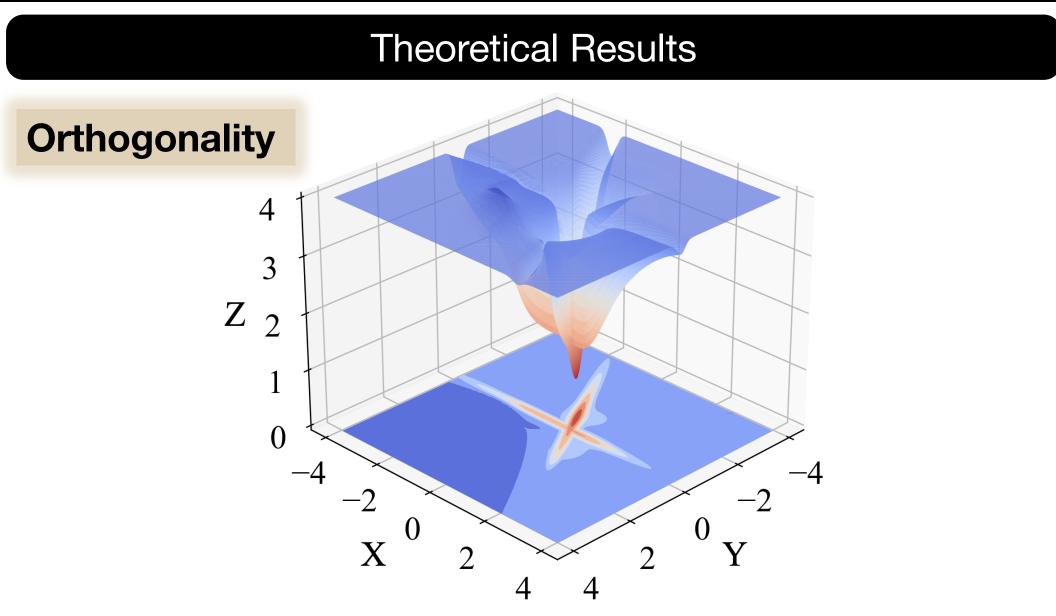
Introduction

- Backdoor attacks embed an attacker-chosen pattern into inputs to cause model misclassification.
- A number of defense techniques proposed by the community. Do they work for a large spectrum of attacks?
- We study the characteristics of backdoor attacks through theoretical analysis and introduce two key properties: orthogonality and linearity.

	Attack	Model Detection			Backdoor Mitigation				Input Detection			
		NC [1]	Pixel [2]	ABS [3]	Fine-Pruning [4]	NAD [5]	ANP [6]	SEAM [7]	AC [8]	SS [9]	SPECTRE [10]	SCAn [11]
Patch	BadNets [12]	•	•	•	•	٠	•	•	•	•	•	•
	TrojanNN [13]	\bullet	\bullet	•		•	\bullet	\bullet		0		\bullet
	Dynamic [14]						0		0			0
	CL [15]					•	•		0	0		
	Input-aware [16]	0	0	0	•		•				•	
Blend	Reflection [17]	0	0	0	0	0	0	•	0	0	0	0
	Blend [18]		\bullet			•		•		0		0
	SIG [19]	0	0	0	0	0	•				•	
Filter	Instagram [3]	0	0	•				•				0
	DFST [20]	0	•	0	•	•	0	•	•		•	0
Invisible	WaNet [21]	0	0	0				•				0
	Invisible [22]			0				•				0
	Lira [23]	•	•	0	0	0	0	•	•	0	•	0
	Composite [24]	0	0	0	0	0	0	0	0	0	•	0

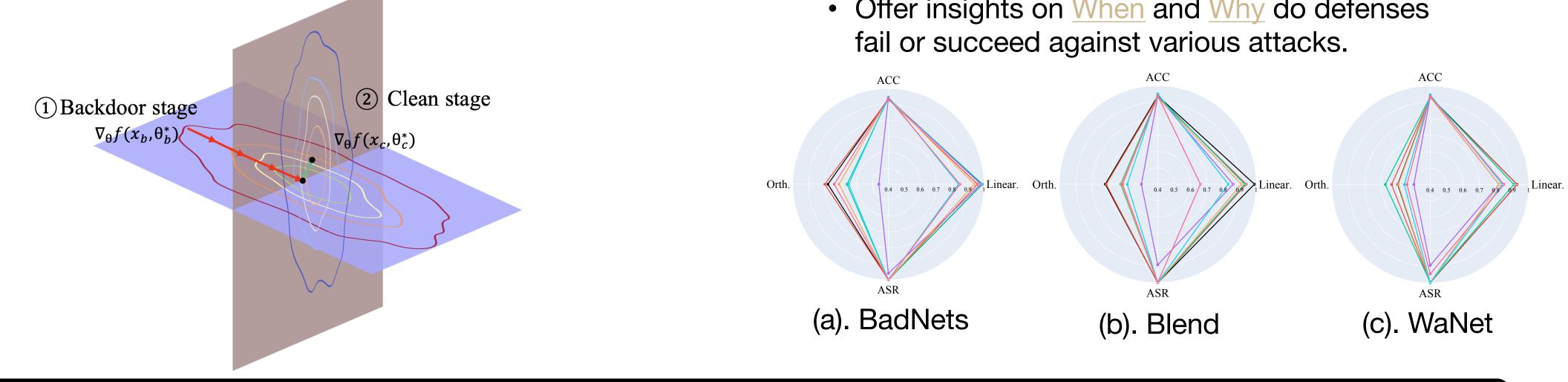

Table 1: A Summary of Existing Attacks and Defenses

Motivation


What are the underlying reasons causing defenses to fail on certain backdoor attacks?

Problem Formulation

• **Key Observation**: We observe that the backdoor task is quickly learned by the victim model (using a very few training epochs), much faster than the main task (clean).



 Based on our observation, we formulate backdoor learning as a <u>two-task continual learning</u> problem.

Theorem 3.4. (Backdoor Stays under Orthogonal Gradient **Descent**) Let $f(x, \theta_h^{\star})$ and $f(x, \theta_c^{\star})$ represent the converged neural network associated with the backdoor and clean tasks, respectively, parameterized by converged backdoor model parameters θ_{h}^{\star} and converged clean model parameters θ_{c}^{\star} . Given a sample of backdoor training data (x_b, y_b) derived from a prior backdoor task b and following the distribution \mathcal{D}_b , we can establish that

$$f(x_b, \theta_c^{\star}) = f(x_b, \theta_b^{\star}) \tag{4}$$

Take Away

- Project Page
- We systematically explore why existing defenses fail on certain backdoor attacks.

$$Orth. = \arccos\left(\frac{\mathcal{L}(\theta_b^{\star}) \cdot \mathcal{L}(\theta_c^{\star})}{\|\mathcal{L}(\theta_b^{\star})\| \|\mathcal{L}(\theta_c^{\star})\|}\right) \qquad L$$

Backdoor gradient Clean gradient

Proposition 3.9. (Linearity Perspective of Backdoor Learning) For a well-poisoned model $f: X \to Y$ with a near 100% attack success rate, there exists a specific hyperplane $\{\mathbf{Wx} - \mathbf{b} = 0\}$, which capable of capturing the Trojan behavior in the backdoor learning phase, and this trojan hyperplane persists in the clean learning phase.

Numerical Results

- Evaluate our theoretical analysis and hypotheses on 14 attacks and 12 defenses.
- Investigate the impact of 6 key factors that affect the orthogonality and linearity.
- Offer insights on When and Why do defenses

We provide a theoretical analysis on two critical properties <u>orthogonality</u> and <u>linearity</u>. Unlock new insights — TRYOUT our NEW measurements beyond ASR and ACC!

Linear. = $LR(\Delta\gamma, \Delta\rho)$

Inputs fluctuations Outputs fluctuations

