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Backdoor Threats Machine Learning?
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Al diffusion models can be tricked into
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ANTHROPC Researchers show that this popular form of generative AI can be hijacked with hidden backdoors

giving attackers control over the image creation process.
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Study on Existing Attacks and Defenses

Table 1: A Summary of Existing Attacks and Defenses

Attack Model Detection Backdoor Mitigation Input Detection
NC [1] Pixel [2] ABS [3] Fine-Pruning [4] NAD [5] ANP [6] SEAM [7] AC [8] SS[9] SPECTRE [10] SCAn [11]
BadNets [12] ° ° ° ° ° ° ° ° [ ° °
pare,  TrojanNN [13] ° ° ° ° ° ° @) °
ate Dynamic [14] ©) O ©)
CL [15] ° ° ol (9
Input-aware [16] @) O O )
Reflection [17] [ O O O (o 0 o) ° @ (o © O
Blend  Blend [18] o ® O 0
SIG [19] O (O O O ) °
Filter Instagram [3] O @ [ ) [ @)
DFEST [20] O O ©) O
WaNet [21] O (0] o o
Invisible Invisible [22] @) O
Lira [23] e (© © 0 ©) ®
Composite [24] (O @) @) @) O O O O O | O

@: attacks can be defended, supported by existing works; ¢ : attacks can be defended, supported by our experiments; O: attacks cannot be defended.



Key Question to Ask:

What are the underlying reasons
causing defenses to fail
on certain backdoor attacks?



Observations on Backdoor Learning
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* Key Observation: Backdoor task is quickly learned much faster
than the main task (clean).

* Formulate backdoor learning as a two-task continual learning
problem.




Why Backdoors Are Not Forgotten During
Learning?

Continual Learning

Tasks

Catastrophic forgetting: When learning new tasks,
the agent may forget previous learned skills...



Backdoor Orthogonality

* Horse vs. Deer

Clean stage
Vof (xp,63) / ,0%)




Backdoor under Orthogonal Gradient Descent

Theorem 1.2. (Backdoor Stays under Orthogonal Gradient Descent)
Let f(z,0;) and f(x,0}) represent the converged neural network associated with
the backdoor and clean tasks, respectively, parameterized by converged backdoor
model parameters 07 and converged clean model parameters 0. Given a sam-
ple of backdoor training data (xp,ys) derived from a prior backdoor task b and
following the distribution Dy, we can establish that

f(zp,07) = f(,0;) (2)



Backdoor Linearity

* Backdoor Sample vs. Clean Sample

e Backdoor Sample o Clean Sample

Latent Separation of Various Attacks s 11
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Backdoor Linearity

Proposition 1.4. (Linearity Perspective of Backdoor Learning) For a
well-poisoned model f : X — Y with a near 100% attack success rate, there
exists a specific hyperplane {Wx—b = 0}, which capable of capturing the Trojan
behavior in the backdoor learning phase, and this trojan hyperplane persists in
the clean learning phase.
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How Orthogonality and Linearity Can Help?

When and Why do defenses
fail or succeed against various attacks?

* 10 hypotheses on backdoor orthogonality and linearity.
* 6 possible factors that impact orthogonality and linearity.



How Orthogonality Helps?

N\

(H1 (Effectiveness of Pruning). Pruning-based defense mecha-
nisms are highly effective against backdoor attacks that exhibit
substantial orthogonality.

. J

4 N
H2 (Effectiveness of Unlearning). Unlearning-based defense
mechanisms demonstrate superior effectiveness against backdoor

attacks with significant orthogonality.
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How Linearity Helps?

(H4 (Effectiveness of Statistical defenses). Statistical defenses\

are most effective when the attack exhibit with noticeable latent
space separation.

J

(H5 (Effectiveness of Weight Analysis). Weight analysis based |

defense mechanisms are effective against backdoor attacks that
exhibit significant linearity.

J

N\

(H3 (Effectiveness of Trigger Inversion). Trigger-inversion

defenses are effective under attacks with linearity but incur a
high computational cost.

.

e Backdoor Sample Clean Sample
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Evaluation Metrics

e Orthogonality (Orth.): to quantify the radian between the backdoor
and clean task gradients

L(05) - L(67)

IZ)] ||£<fz>\|)

Backdoor gradient Clean gradient

Orth. = arccos(

e Linearity (Linear.): to quantify the linear relationship between
changes in input and output across each layer in a sub-network.

Linear. = LR(A~, Ap)
t

Inputs fluctuations Outputs fluctuations



Experiments

First Stage (Epoch 10)

Second Stage (Epoch 100)

Attack
Acc. ASR Linear. Orth. Acc. ASR Linear. Orth.
Clean 0.78 - 0.46 31.07| 0.94 - 0.47 |42.27
— BadNets 0.71 1.00 0.99 72371 094 1.00 0.99 78.79
§ TrojanNN 0.68 1.00 1.00 67.49| 094 1.00 1.00 |75.24
& | Dynamic 0.77 1.00 1.00 67.60| 0.94 1.00 0.99 |73.83
Input-aware 0.77 0.95 0.99 60.56| 0.90 0.99 0.99 70.72
— | Reflection 0.75 0.96 0.76 54.52| 0.93 0.99 0.88 61.03
E) Blend 0.78 1.00 0.99 60.84| 094 1.00 1.00 [72.63
R SIG 0.75 0.98 0.73 59.18| 0.93 1.00 0.77 72.16
§ Instagram 0.76 0.93 0.60 63.53| 0.93 1.00 0.82 62.41
E DFST 0.72 0.97 0.77 58.86| 0.93 1.00 0.79 64.47
_% WaNet 0.82 0.95 0.83 62.30| 0.92 0.99 0.82 65.44
‘@ | Invisible 0.78 0.97 1.00 62.42| 093 1.00 1.00 169.96
E Lira 0.76 0.99 1.00 62.37| 094 1.00 1.00 [72.78
Composite| 0.82 0.93 0.72 3998 092 0.94 0.68 4295
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Exploring the Orthogonality and Linearity of
Backdoor Attacks

Take-aways:

1. We systematically explore why existing defenses fail on certain
backdoor attacks.

2. We provide a theoretical analysis on two critical properties
orthogonality and linearity.

Paper, code, slides and video:
https://orthoglinearbackdoor.github.io
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https://orthoglinearbackdoor.github.io/

