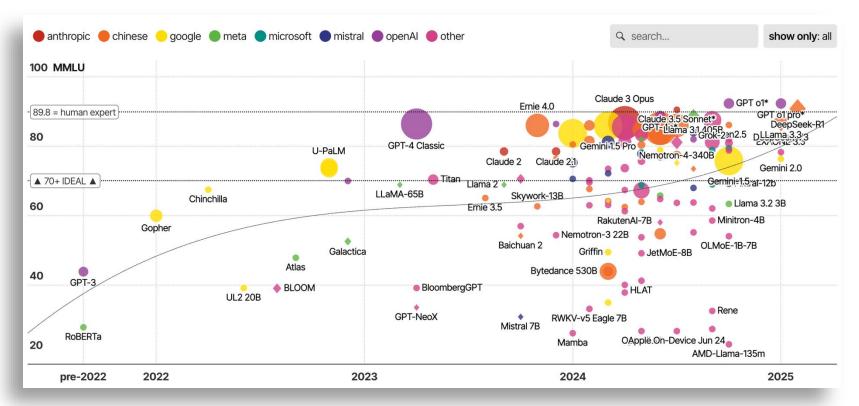
SOFT: Selective Data Obfuscation for Protecting LLM Fine-tuning against Membership Inference Attacks

Kaiyuan Zhang, Siyuan Cheng, Hanxi Guo, Yuetian Chen, Zian Su, Shengwei An, Yuntao Du, Charles Fleming[†], Ashish Kundu[†], Xiangyu Zhang, Ninghui Li USENIX Security 2025

LLM Advancement

Major Large Language Models (LLMs)

ranked by capabilities, sized by billion parameters used for training

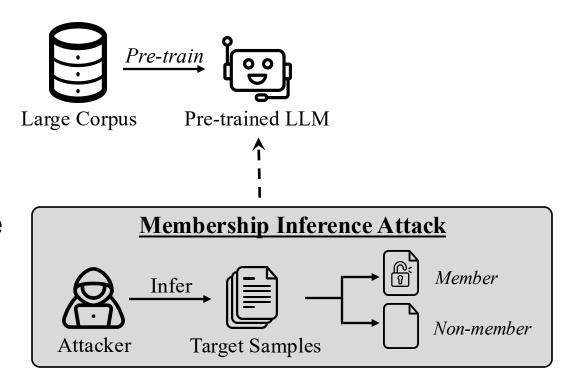


[1]. Source: informationisbeautiful.net

Membership Inference Attack

MIA determines <u>whether a specific data</u> <u>record was used</u> to train a target model or not

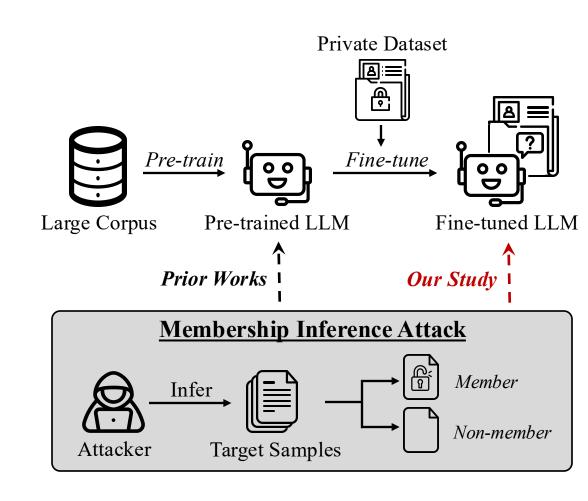
- LLM pre-training
 - Pre-training large-scale LLMs requires resources, e.g. A100 GPUs
 - Small companies and individuals use pretrained model as the backbone to fine-tune



Membership Inference Attack

MIA determines <u>whether a specific data</u> <u>record was used</u> to train a target model or not

- LLM pre-training
- LLM fine-tuning
 - Data used in fine-tuning often includes either PII, copyright data, or even confidential organizational information

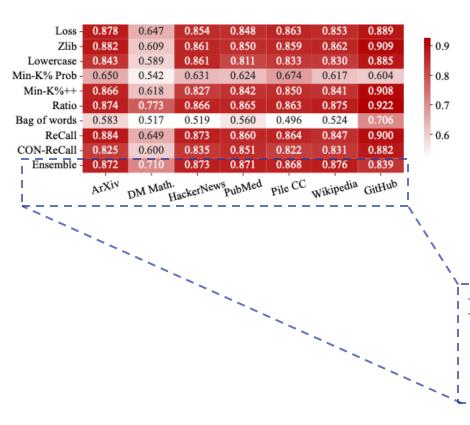


The Calibration Challenge

The Calibration Challenge. Existing LLM MIAs mainly differ on how to differentiate uncommon sentences used in training from common sentences not used in training. Many of these methods share similarities on calibration and differ mainly in their use of loss, log-likelihood, perplexity, contrastive ratios, or an extra reference model.

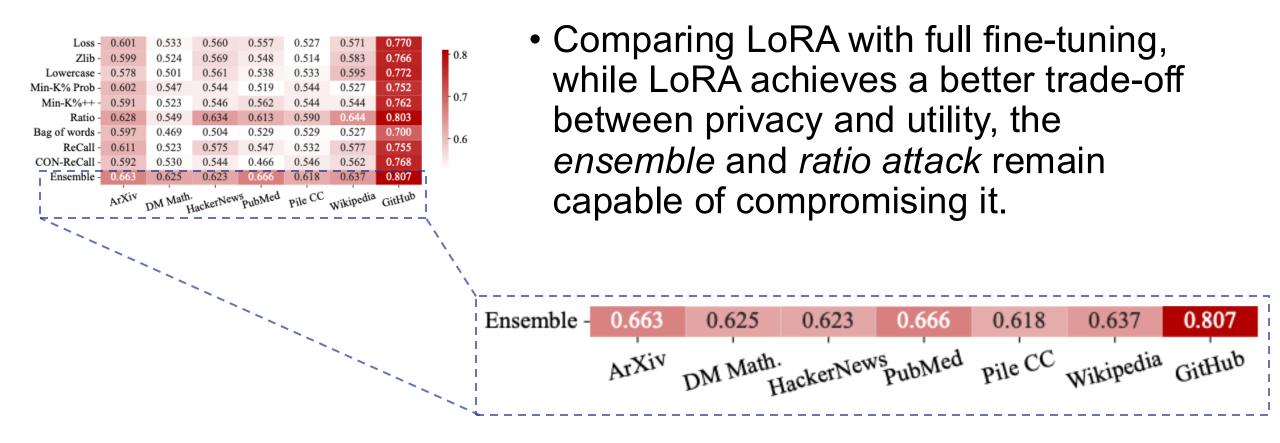
 The ineffectiveness of existing membership inference attacks in pre-trained LLMs, motivating the introduce of the *Ensemble attack*.

Pitfalls in Fine-tuning

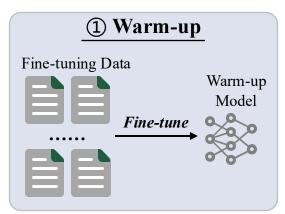


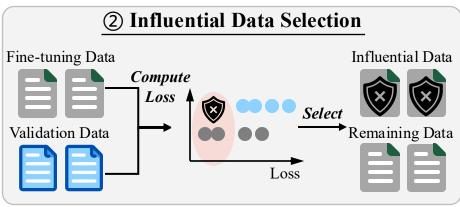
- As model size and fine-tune epoch increase, *fully fine-tuned* LLMs exhibit *greater privacy leakage*.
- Even *one-epoch* fine-tuning results in significant leakage.

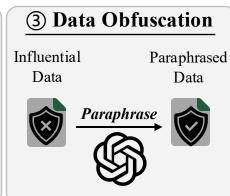
Privacy-Utility Trade-offs in LoRA

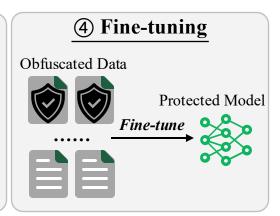


• In high-level, SOFT involves <u>substituting selective influential samples</u> with <u>semantically equivalent alternatives</u> by a paraphraser during fine-tuning.



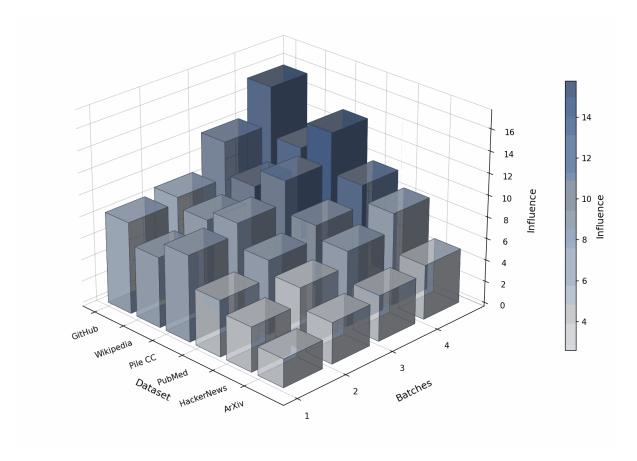




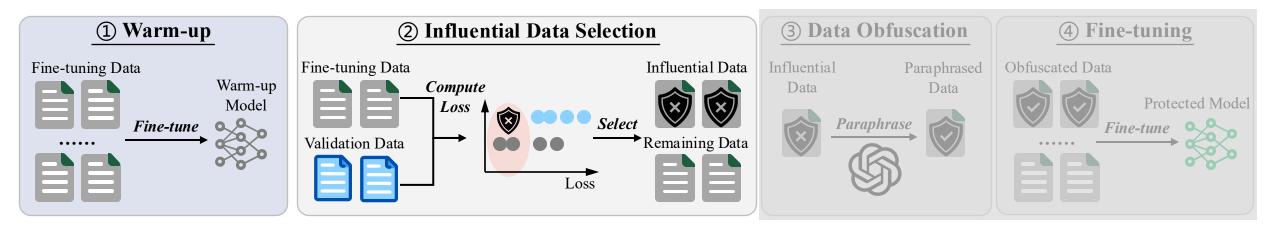


Data Selection

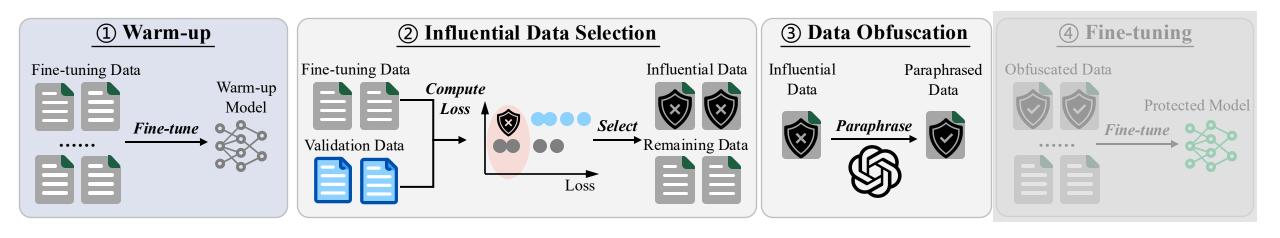
- Inspired by influence function [2], we define influential samples as those vulnerable to MIA.
- SOFT selectively replaces influential samples, i.e., <u>those</u> <u>are easily memorized and</u> <u>exhibit lower loss values</u>, with their obfuscated counterparts.



- 1. Warm-up Fine-tuning
 - Warm-up helps assess the initial influence level of each sample
- 2. Influential Data Selection
 - SOFT evaluates sample from the fine-tuning dataset and select influential ones

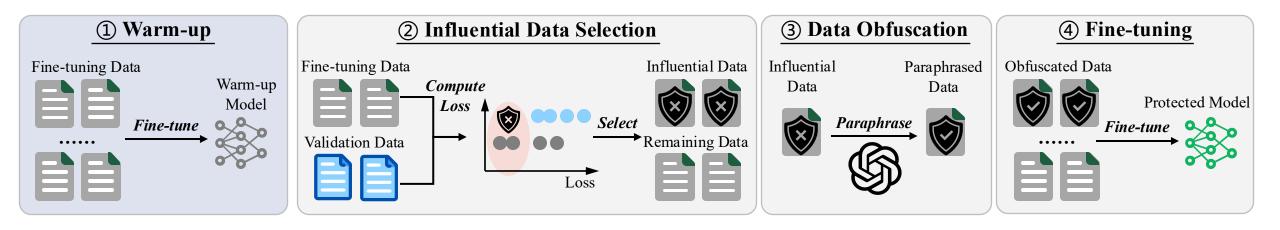


- 1. Warm-up Fine-tuning
 - Warm-up helps assess the initial influence level of each sample
- 2. Influential Data Selection
 - SOFT evaluates sample from the fine-tuning dataset and select influential ones



3. Data Obfuscation

- SOFT replaces the selected influential samples with paraphrased versions
- 4. Fine-tuning
 - Combining the obfuscated data with the remaining safe data, SOFT finetunes on the updated dataset



3. Data Obfuscation

SOFT replaces the selected influential samples with paraphrased versions

4. Fine-tuning

 Combining the obfuscated data with the remaining safe data, SOFT finetunes on the updated dataset

Evaluation

Does SOFT effective in defending against MIAs?

MIAs	ArXiv										
MIAS	Pretrain	FT	LoRA	SOFT							
Loss [92]	0.508	0.822	0.601	0.525							
Zlib [16]	0.508	0.811	0.593	0.521							
Lowercase [16]	0.490	0.785	0.577	0.517							
Min-K% Prob [73]	0.514	0.615	0.554	0.510							
Min-K%++ [98]	0.509	0.757	0.584	0.519							
Ratio [16]	0.493	0.952	0.689	0.558							
Bag of words [62]	0.504	0.508	0.508	0.505							
ReCall [87]	0.508	0.840	0.582	0.533							
CON-ReCall [82]	0.505	0.764	0.557	0.518							
Ensemble	0.551	0.807	0.663	0.568							
Average	0.509	0.766	0.591	0.527							

Table 1: Evaluation of SOFT's defense effectiveness against multiple MIAs, with comparison to LoRA and full fine-tuning (FT). Performance is measured using AUC-ROC scores, where lower values indicate stronger defense.

MIAs	ArXiv				HackerNews			PubMed				Pile CC				Wikipedia				GitHub				
	Pretrain	FT	LoRA	SOFT	Pretrain	FT	LoRA	SOFT	Pretrain	FT	LoRA	SOFT	Pretrain	FT	LoRA	SOFT	Pretrain	FT	LoRA	SOFT	Pretrain	FT	LoRA	SOF
Loss [92]	0.508	0.822	0.601	0.525	0.498	0.900	0.645	0.515	0.478	0.895	0.619	0.496	0.502	0.887	0.633	0.519	0.501	0.936	0.644	0.530	0.653	0.846	0.750	0.625
Zlib [16]	0.508	0.811	0.593	0.521	0.496	0.910	0.641	0.517	0.481	0.893	0.621	0.509	0.489	0.902	0.648	0.533	0.505	0.939	0.644	0.532	0.678	0.871	0.776	0.647
Lowercase [16]	0.490	0.785	0.577	0.517	0.507	0.845	0.575	0.515	0.515	0.850	0.595	0.541	0.482	0.858	0.598	0.522	0.499	0.887	0.650	0.536	0.611	0.820	0.716	0.59
Min-K% Prob [73]	0.514	0.615	0.554	0.510	0.492	0.627	0.541	0.489	0.502	0.645	0.550	0.499	0.511	0.668	0.547	0.518	0.495	0.669	0.638	0.512	0.506	0.613	0.643	0.515
Min-K%++ [98]	0.509	0.757	0.584	0.519	0.498	0.800	0.579	0.511	0.486	0.856	0.568	0.503	0.507	0.842	0.549	0.518	0.519	0.912	0.744	0.533	0.606	0.869	0.640	0.598
Ratio [16]	0.493	0.952	0.689	0.558	0.462	0.943	0.702	0.533	0.503	0.947	0.692	0.541	0.510	0.949	0.918	0.552	0.488	0.944	0.774	0.576	0.507	0.955	0.922	0.516
Bag of words [62]	0.504	0.508	0.508	0.505	0.529	0.521	0.521	0.523	0.513	0.528	0.528	0.518	0.483	0.504	0.511	0.511	0.501	0.507	0.507	0.507	0.701	0.649	0.651	0.660
ReCall [87]	0.508	0.840	0.582	0.533	0.501	0.907	0.542	0.515	0.480	0.908	0.547	0.511	0.497	0.895	0.545	0.532	0.505	0.938	0.641	0.529	0.630	0.851	0.750	0.627
CON-ReCall [82]	0.505	0.764	0.557	0.518	0.486	0.740	0.577	0.500	0.488	0.868	0.556	0.516	0.458	0.844	0.557	0.513	0.496	0.925	0.627	0.530	0.638	0.847	0.743	0.620
Ensemble	0.551	0.807	0.663	0.568	0.524	0.886	0.749	0.567	0.576	0.884	0.653	0.546	0.673	0.942	0.884	0.604	0.512	0.925	0.847	0.587	0.747	0.944	0.858	0.669
Average	0.509	0.766	0.591	0.527	0.499	0.808	0.607	0.519	0.502	0.827	0.593	0.518	0.511	0.829	0.639	0.532	0.502	0.858	0.672	0.537	0.628	0.827	0.745	0.607

Observations: SOFT effectively reduces attack efficacy by significantly lowering the AUC-ROC scores to 0.527 on ArXiv.

SOFT: Selective Data Obfuscation for Protecting LLM Fine-tuning against Membership Inference Attacks

Take-aways:

- 1. SOFT is designed to protect LLM fine-tuning against membership inference attacks.
- 2. SOFT is grounded in influence functions and data selection.
- 3. SOFT selectively replaces influential samples with their obfuscated counterparts.
- 4. Paper, code, slides: https://soft-mia.github.io/

