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LLM Advancement
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Major Large Language Models (LLMs)

ranked by capabilities, sized by billion parameters used for training

[1]. Source: informationisbeautiful.net
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MIA determines whether a specific data 
record was used to train a target model 
or not

• LLM pre-training
• Pre-training large-scale LLMs requires 

resources, e.g. A100 GPUs

• Small companies and individuals use pre-
trained model as the backbone to fine-tune
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MIA determines whether a specific data 
record was used to train a target model 
or not

• LLM pre-training

• LLM fine-tuning
• Data used in fine-tuning often includes 

either PII, copyright data, or even 
confidential organizational information



The Calibration Challenge
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• The ineffectiveness of existing membership inference 
attacks in pre-trained LLMs, motivating the introduce 
of the Ensemble attack.



Pitfalls in Fine-tuning

• As model size and fine-tune epoch 
increase, fully fine-tuned LLMs exhibit 
greater privacy leakage. 

• Even one-epoch fine-tuning results in 
significant leakage.
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Privacy-Utility Trade-offs in LoRA

• Comparing LoRA with full fine-tuning, 
while LoRA achieves a better trade-off 
between privacy and utility, the 
ensemble and ratio attack remain 
capable of compromising it.
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Selective Data Obfuscation

• In high-level, SOFT involves substituting selective influential samples 
with semantically equivalent alternatives by a paraphraser during 
fine-tuning.
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Data Selection

• Inspired by influence function [2], 
we define influential samples as 
those vulnerable to MIA.

• SOFT selectively replaces 
influential samples, i.e., those 
are easily memorized and 
exhibit lower loss values, with 
their obfuscated counterparts.
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[2]. Koh, Pang Wei, and Percy Liang. Understanding black-box predictions via influence functions. ICML 2017



Selective Data Obfuscation

1. Warm-up Fine-tuning
• Warm-up helps assess the initial influence level of each sample

2. Influential Data Selection
• SOFT evaluates sample from the fine-tuning dataset and select influential 

ones
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Selective Data Obfuscation
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ones
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Selective Data Obfuscation

3. Data Obfuscation
• SOFT replaces the selected influential samples with paraphrased versions

4. Fine-tuning
• Combining the obfuscated data with the remaining safe data, SOFT fine-

tunes on the updated dataset
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Evaluation
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• Does SOFT effective in defending against MIAs?

Observations: SOFT effectively reduces 

attack efficacy by significantly lowering the 

AUC-ROC scores to 0.527 on ArXiv.



SOFT: Selective Data Obfuscation for Protecting LLM 
Fine-tuning against Membership Inference Attacks

Thank you for listening!

Take-aways:

1. SOFT is designed to protect LLM fine-tuning against 
membership inference attacks.

2. SOFT is grounded in influence functions and data selection.

3. SOFT selectively replaces influential samples with their 
obfuscated counterparts.

4. Paper, code, slides: https://soft-mia.github.io/

https://soft-mia.github.io/
https://soft-mia.github.io/
https://soft-mia.github.io/
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